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Abstract-The neutral stability of an absorbing, emitting, scattering, nongray viscous Ruid contained 
inside an inclined slender slot and subjected to convective boundary conditions is examined for 
inclination from 0” to 180”. The modified P-l approximation (Eddington approximation) is employed for 
the radiation part of the problem. The effects of the Biot numbers H, and H, at the lower and upper 
surfaces, the conduction-to-radiation parameter, N, optical thickness q,, single scattering albedo w, the 
wail emissivities a, and sZ, the nongrayness factor n and the inclination angle 6 on the onset of stability in 
gases are determined for both the Iongitudinal and transverse vortex rolls. The results show that 
radiation besides its stabilizing effect significantly shifts the transition angle for cross over from the 

transverse to the longitudinal rolls towards horizontal. 

NOMENCLATURE 

magnitude of the wave vector, 

LZ=J&Y$ 
wave number in x-direction; 
wave number in z-direction ; 
a complex number ; 
constant-pressure specific heat 
of fluid ; 
width of the slot; 

d 
operator, --; 

d.v 
acceleration of gravity; 
external Grashof number, 

y&T,, - ‘L,)d3/v2; 
internal Grashof number, 

rs(7;, - L)d3,‘v2; 
heat transfer coetlicient at the 
lower surface; 
heat transfer coefficient at the 
upper surface; 
Biot number at the lower surface, 
H, = h,d/k; 
Biot number at the upper surface, 
H, = h,d/k; 
perturbed incident radiation ; 
dimensionless perturbed incident 
radiation, j’/46 F:(T, 1 - T,,); 
thermal conductivity of the fluid ; 
height of the slot ; 

@ 
conduction-to-radiation parameter, - ; 

4657 
perturbed pressure; 
dimensionless perturbed pressure, 
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Pr, Prandtl number, v/a; 

%9 dimensionless initial radiative 

RZ, 
heat-flux, Q,/45’ib3 (T,, - T,,); 
external Reyleigh number, dF* Pr; 

Ra, internal Rayleigh number, Gr . Pr; 

t, time; 

T’, perturbed fluid temperature; 

TJ, constant mean temperature; 

T-1, T,z, environment tem~ratures at the lower 
and upper surfaces, respectively; 

L %z, mean temperatures of lower and upper 
walls, respectively for the initial (i.e., 
base flow) situation; 

u’, U‘, w’, perturbed velocity components; 
t, 6,9, dimensionless perturbed velocity 

components (w’, v’, w’)/u,; 

uet characteristic velocity, 

y@(T.,,-‘K,,)d2fv; 
u”, dimensionless base flow velocity at 

vertical position, 0,/u, ; 
X, x 2, Cartesian coordinates with Ymeasured 

normal to the fluid layer; 
x, Y, 2, W, r, 2)/d. 

Greek symbols 

thermat diffusivity ; 
mean extinction coefficient, 

P = &+K,)(a+K,); 
coefficient of thermal expansion 
for &id ; 

=L 10 ; yy2; 

angle measured from horizontal; 
emissivities of lower and upper 

surfaces, respectively ; 
nongrayness factor, (KJK,)“~ ; 
dimensionless perturbed tem~rature, 

T’i’(T,, - 72; 
1095 
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tip, ~a, Planck mean and Rosseland mean 
coefficients, respectiveiy ; 

/Vi, = $E,T0/(2-Ei)r;i = i,2; 

;;, 

kinematic viscosity; 

dimensionless stream function; 

ii* = 2(2-&)zo(l-w)r/&; i = 1,2; 

0% density of fluid ; 
CT. scattering coefficient for fluid; 

4, Stefan~Boltzmann constant ; 
z, dimensionless time, T = vt,@ ; 

TO, optical thickness of the fluid, 
T,=fi'd; 

0. single scattering albedo, 
w = a/(a -t K”); 

d2 l- 1 dP 1 
A, =z --._-_g. 

I o L PodX 1 

Superscripts 

-9 mean quantities; 
‘-* + 
9. t 1 refer to perturbed quantities. 

Subscripts 

refers to outside environment ; 
fixed quantities. 

INTRODUCTION ANALYSIS 

THE EFFECT of radiation on the initiation of the 

convective motion in fluids confined between two 
horizontal isothermal plates with lower plate hotter 
than the upper one (i.e., Benard Problem) has been 

of interest during the last three decades. The earlier 
studies of such stability problems were restricted to 

gray fluids [l-3] and the radiation part of the 
problem was treated approximately by using the 
optically thin or the optically thick limit approxi- 
mation. Spiegel [4] considered the Benard type 
problem for a gray fluid for the entire range of the 
opticai thickness, but neglected the effect of con- 
duction and the radiation boundary conditions from 
the perturbed integral form of the equation of 
radiative transfer. An experimental and theoretical 
investigation of the effects of radiation on the onset 
of convection in dry air and ammonia contained 
between two isothermal plates, has been published 
by Gille and Goody [S]. They considered the 
spectral effect of nongrayness on the onset of 
convection and experimentally demonstrated that 
radiation delayed the onset of instability. Arpaci and 
G&urn [6] employed the Eddington approximation 
(i.e., P-l approximation) to study the effects of 
radiation from the boundaries and included the 
nongrayness effects of gases on the stability of an 
absorbing, emitting fluid contained between two 
infinitely horizontal rigid (or free) planes at different 
isothermal temperatures. They checked the accuracy 
of the “P-l, P-3 and P-5 approximations” in a 
stability problem by comparing the approximate 
solutions with the exact solution of Spiegel [4]. 

Arpaci and Bayazitoglu [7] investigated the effects of 

Consider a layer of fluid contained inside a slot 
inclined from the horizontal by an angle fi, as shown 
in Fig. 1. The slot has the dimensions L for height 
and d for width with the assumption that the aspect 
ratio L/d >> 1. If a small temperature difference is 
imposed across the layer of the fluid in the direction 
normal to the sidewalls, a unicellular motion sets up 
in such a manner that the fluid near the hot plate 
rises upward and that near the cold plate descends 
down. If this temperature difference is gradually 
increased, the initial laminar motion between the 
plates breaks up and secondary flow appears in the 
form of two-dimensional multicellular convective 
motion. The main purpose in this study is to 
investigate the effect of radiation on the onset of 
secondary flow. In the present analysis it is assumed 
that the flow is incompressible, laminar, Newtonian, 
and has constant physical properties except for the 
density which appears in the body forces (i.e., 
Boussinesq approximation). It is assumed further 
that viscous dissipation and the work of compression 

Frc;. I. Inclined slot. 

radiation on the neutral instability of natural flow of 
gases in a slender slot between two very long vertical 
plates at two different isothermal temperatures for an 
absorbing and emitting fluid by using the Eddington 
approximation, and included the nongrayness of the 
fluid. Their results indicate that the relative effect of 
radiation is much less in magnitude for the vertical 
case than the case of horizontal. Recently, Ozisik and 
Hassab [S] studied the thermal instability of a 
radiating gas between two inclined parallel plates 
heated from below and subjected to convective 
boundary condition at the upper surface. Their 
analysis was restricted to inclinations such that the 
longitudinal disturbances were dominant. 

The foregoing review of the literature reveals that 
thermal instability of radiating fluids in slots for 
inclinations from 0 to 180’ has not yet been 
investigated. Therefore, this analysis is devoted to the 
study of stability of an absorbing, emitting, isotropi- 
tally scattering nongray fluid contained in an 
inclined slot having a very large aspect ratio and 
subjected to convective boundary conditions at both 
boundaries. Also included is the stability of a 
horizontal layer of radiating fluid heated from below 
and subjected to a free surface at the upper 
boundary. 
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are negligible. The analysis is restricted to the so- 
called conduction regime, which requires that the 
aspect ratio of the slot is very large [9, lo]. 

Gooerning general equations 
The equations of motion and energy that are basic 

for the analysis of the instability of fluids can be 
written in the general form, using the vector notation 
as 

Continuity: 

Momentum: 

v.v=o (1) 

DV 
-= 
Dt 

-AFP-(l-y.AT)g(isinS 

sscos 6) + vv*v (2) 

DT 
Energy: Dt = aV2T-2(4@T4-5). (3) 

P 

where 

a_ a 
V=17Xi+iiyj+~~L. 

v = vi+ vj+ wk, 

AT= T-T,,, 

with U, I/and Ware the velocity components in the 
X, Y$ and Z directions respectively. J, P and Tare 
the incident radiation, dynamic pressure and the 
temperature respectively; pO and cp are the density 
and specific heat at constant pressure, M is the 
thermal diffusivity, v is the kinematic viscosity, y is 
the thermal expansion coefficient for the fluid; t is 
the time, 6 is the angle measured from the horizon- 
tal ; i^, j^ and i stand for the unit vectors in the X, Y 
and 2 directions respectively and g is the gravity. 

The incident radiation term J appearing in the 
above energy equation should be obtained from the 
solution of the equation of radiative transfer sub- 
jected to appropriate radiative boundary conditions 
for the problem. However, the exact solution of the 
equation of radiative transfer with the presence of 
scattering is a very complicated matter. It is for this 
reason we use the P-l approximation of the spherical 
harmonics method by including the effects of 
isotropic scattering. The P-l equation is modified to 
allow for the nongrayness effects of the gas by 
following the ideas suggested in [ll-133; the 
resulting equation for the scalar quantity J, is given 
as 

V’J-3ti&+o)J = -~~K,,(K~+u)~T~, (4) 

where xp, rcR and G are the Planck mean absorption, 
Rosseland mean absorption and mean scattering 
coefficients respectively and d: is the Stefan- 
Boltzmann constant. 

Basejow analysis 
The equations governing the initial motion of the 

fluid in an inclined slot having a very large aspect 

ratio (i.e., L/d>> I), under the modified P-l approxi- 
mation for the radiation part of the problem, are 
given in the dimensionless form as: 

x-momentum : 

d2ii 
-++sin6 = A 
dy2 

Energy: 

o 

Radiation : 

(64 

d2@r 
_ 

----i--3(1-w)t~~~= 4(1-o)r,r$, 
dy 

(7a) 

with the following boundary conditions for U and 6: 

E7 = 0, at y=O,l (5b) 

d@ To - 

[ 1 --.-- 
dy Nqr 

-HI@= -H,, at y = 0 (6b) 

+H$=O, at y= 1, (6~) 

and the Marshak boundary conditions for opaque 
walls [ 141: 

d& -;i;-(,ij,=O, at y=O 

d% -t-5&=0, at y= 1. 
dy 

(7b) 

A gross mass balance for the closed system is given 
as: 

s 

1 
U(y)dy = 0. Gc) 

0 

Here, U, B and 4, are the dimensionless base flow 
quantities of velocity in the x-direction, temperature 
and the y-component of the radiative heat flux 
respectively; 5O is the optical thickness; N is the 
conduction-to-radiation parameter; w is the single 
scattering albedo; &I and Ed are the emissivities of the 
lower and upper surfaces respectively, and H, and 
H, are the Biot numbers at the lower and upper 
surfaces respectively. The thermal resistances of the 
walls are neglected in equations (6b) and (6c), since 
the walls are assumed having a thickness very small 
compared to that of the. fluid layer [14]. it is to be 
noted that the one-dimensional radiative equation 
for the base flow analysis is written in terms of qr 
instead of f, because the boundary conditions of L& 
become homogeneous as apparent from equations 
(7b) and (7~). However, for multi-dimensional case, 
q, being a vector, it is convenient to write the 
radiation equation for the disturbances in terms of 
the scalar quantity J. Also, the nonlinear term 
dT4/dy4 contained in equation (7a) is linearized 
since the temperature variation across the fluid layer 
is small. 
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The solution of the above coupled equations (5) Introducing the total quantities U, v w etc. into the 
to (7) is somewhat lengthy, but a straight-forward system of equations (l)-(4), subtracting from each of 
matter; the resulting expressions for e(y) and U(y) the resulting expression the corresponding base flow 
are determined as: equation, neglecting the nonlinear terms, the follow- 

&y) = 1 +A,(eSy- l)+A,(l -e-Sy) ing system of linear perturbation equations is 
obtained in the dimensionless form as: 

l + (4Hr/3N)] (ga) 
:- 

1 lh ; ac+E=O, (10) 
ii(y)/sin6 = U,(y) = b,y(y-- 1) dx r7y ?z 

es- 1 
__ 

Y s2 -A2 7- 1 [ 
-$Y(Y”- l), (8b) 

* 

+C;*r$isin6 = -g+Bsin6, (lla) 

where 

A, = &{CI(s-Tz)em”-52x21 

+QCs+51(l +x,,II~ 

A2 = &{‘:[(~+~2)e’+~2x11 

+~~[s-t*(1+x,)l}, -(l -w)rg- 

A3 = -RI [l+A,(e”-l)+A,(l-em”)], 

+&!fi= 
dy N 

(48-Y) (12) 

[V’-3(1-s)ri]j= - 12(1 -w)ri&, (13) 

F= [~-5~(1+x,)lC(~-5~)e-“-5~x~l 
-[s+~l(1+~2)l[52~1+(~+52)eSl, 

s = [3(1-m)i;(1+$)]‘2; 

4 l-e-” 

x2 = 1+(3N/4I-) s ’ 

4 es--l 

x’ = 1+(3N/4l-) s ’ 

1: = R’ 5, i = 1 or 
1 + (3N/4l-) 

2, 
70 

1 1 1 

[ H,+H,+1+(4I/3N) I 

-1 

Ri= ’ 

b,=f A-l+AI-A,- 
I 

1 + (4I-/3N) A 
H 3 1 1 

1 

A= ,+A,yl+l2[~~)(f-f)-~]} 

_,,(,.12[(7)(;+;)-$]j 

+A A+ 1+(4r/3N) 

3 2 I 1 HI 

The stability analysis 
The total and perturbed quantities are defined as: 

U = ii(Y)+u’, I/= u’, 

w= w’, P = P(X) + p’, 

T= T(Y)+T’, J = J(Y)+j’. (9) 

subject to the following boundary conditions: 

ir = i, = iv = 0, at y = 0,l (rigid walls) (14a) 

_tH$=O,aty=O,l, (l4b) 

and the Marshak boundary conditions in terms ofj 
given as [ 141: 

A 
?fi,(j-4ii)=O,aty=O,l. 
ay 

(l4.c) 

In the above definitions Ri is the external Rayleigh 
number based on the difference between the environ- 
ment temperature, Gr* is theexternaL Grashofnumber, Pr 
is the Prandtl number and U,.(y) is the base flow velocity 
at the vertical position. 

The formal solution of the linear stability equa- 
tions (10-13) can be taken in the form: 

E(x,y,z,r)= F*(y)exp[i(a,x+a,z)+c7], (15) 

where, P =,j,Aii,;,k or 8, the quantity c is complex; 
a, and a2 are the wave numbers in the x and z 
directions respectively. The solution (15) is in- 
troduced into the stability equations (10-14) and the 
variables p*, u* and w* are eliminated among these 
resulting expressions. We obtain the following per- 
turbation quations: 

[c- (D2 -aZ)](D2 -a2)u* 

+ia,Gr*sinG[ii,(D2-a’)-D2U,]u* 

= -a2f3*cos6-ia DB*sind 1 
(16) 



Effects of radiation and convective boundary conditions 1099 

[cPr-(D’-ua2)]Q*+iuIR60*sin6 

+&D~“*= -(lp;)r'r(t$@*-j*) (17) 

CD’-a’--3(1 -(u)t@j*= - 12(1 -w)riB*. (18) 

Subject to the boundary conditions: 

U* = DV* = D/U*+&j*)FH,R* 

= Dj* + &(j*-46,) = 0, at y = O,l, (19) 

where 
d 

a’=a~+&D=- 
dy ’ 

For the horizontal position, when the upper surface 
is free while the lower one is rigid, the boundary 
condition for opaque surface becomes unchanged 
but the velocity boundary condition at the upper 
surface takes the form: 

V* = D2 V* = 0, at y = 1 (free surface). (20) 

The onset of instability for the above system can 
either occur as stationary convective cells or in the 
form of travelling waves. It has been verified 
experimentally in references [ 15, 161, for CO, and 
water, that the onset of instability occurs as 
stationary cells. Furthermore, since the majority of 
fluid flow problems with pronounced effects of 

radiation are associated with gaseous media, (i.e., Pr 
< l), the instability in such a media is expected to set 
in as stationary rolls (i.e., c = 0). These disturbances 
are ‘dominated by two-dimensional waves and occur 
as either longitudinal or transverse rolls. For the case 
of a horizontal slender slot, the fluid being stagnant 
prior to the onset of instability, the two and three- 
dimensional analysis of the problem lead to the same 
result. It is experimentally verified that instability of 
the fluid results in a three-dimensional convective 
patterns called the Benard hexagonal cells. 

Longitudinal rolls (ai = 0). The governing equa- 
tions are obtained by setting c = nt = 0 in equations 
(16-18). Then if O* is eliminated from the resulting 
expressions, we obtain: 

(D’-a:)%+(y) = a~R&osS(DZ-u~ -K’)j’(y) 

(21) 

(D’-a$)(D’-af-.s’)j+(y)= D&+(y), 

where we defined 

(22) 

u+(y) = - 12(1 -w)r$RSo*(y), j+=j* 

k.2 = 3(1 -o,r& s2=3(1-w)r; 
1 II 

1,; 

The boundary conditions for u’(y) and j’(y) for 
both convective rigid walls become: 

t: + = DV+ = liDj’ T (D’- a$)j+ = 0. at y = 0,l 
(23a) 

for the case of free upper surface, the velocity 

boundary conditions at y = 1 take the form 

V+=D*V+=O, at y=l. (23b) 

Transverse rolls (a2 = 0). If the variable u*(y) 
appearing in equations (16-19) is replaced by the 
streamfunction$*(y)(V* = - ia, II/*),andcissetequal 
to zero, one obtains 

(D*-at)*+*(y)-ia,Gr*sinG[r&(D*-a:)$* 

-DZri,$*] = [ia,0*coss--DB*sin6] (24) 

(D* -@3*(y)- ia, R@i,B*sinG 

_ D(j$*] = (’ pI’7ir (a@* _j*) (25) 

[D*-(I:-3(1-w)ti]j*(y)=-12(1-w)7:0*, 

(26) 

with the following boundary conditions for rigid 
walls: 

$*=D$*=D(S*+gj*) 

r Hi@* = Dj* T Li(j* - 48*) = 0, 

at y=O,l. (27) 

Solutions of eigenoalue problems 
In the present analysis, the equations governing 

the longitudinal and transverse rolls are solved by 
the “Chardrasekhar Method”, because the con- 
vergence is fast for moderate Prandtl numbers 

[7,8,171. 

(a) Longitudinal rolls. To solve the equations 

(21-23) governing the longitudinal rolls, an appro- 
ximate solution is chosen for V’(y) as a series of 
orthogonal functions: 

V’(Y) = ; 4n@m(Y), (284 
Ill=, 

where the functions QD, are constructed from the 
solution of the following auxiliary problem: 

d40 
+=r~i@~, in O<y<l, (28b) 

., 

or 

am = Da,,, = 0, y = 0 (rigid wall), 

Q,,, = D*@,,, = 0, y = 1 (free surface). 
(28d) 

;; 
The functions Q,,(y) satisfying the boundary co& 

O,,, = Da,,, = 0, y = 0,l (rigid walls), (Xc) 

ditions (28~) and (28d) are taken as: 

%(Y) = 
cash a,,,~ - cos a,,,) 

cash x,,, -cos x,,, 

sinh a,y -sin a,y 
_ 

sinh a, -sin a,,, ’ (29) 
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where tl,‘s are the positive roots of: 

cash SL cos a = 1 (both wails rigid) (30a) 

coth tl -cot c1= 0 (upper surface free). (30b) 

The orthogonality condition is given as 

I 

1 
dim CD, d.v = L, N,,,, (31) 

0 

where 6,, is the Kronecker detta and, 

N, = [tanh c(, sinh er,] -’ (both walls rigid), 

or 

N =2tanhzar,sinha,sina,(coshu,cosa,- 1) _____. m (sinh~~-sin~~)4 

(upper surface free) 

When the solution of V’(y) is introduced into 

equation (22) together with the expansion 

j’(J’) = f ‘%j,(a), 
m= 1 

(32a) 

one finds 

(D’ - a;)(D* -u; - s2)j,( y) = DB( J’)@,,,( y), (32.b) 

where De is obtainable from equation (8a) by 
differentiation. Equation (32b) is solved analytically 

for j,(y). Now introducing the solutions for V’(r) 
and j’(J)) into equation (21) and utilizing the 
orthogonality condition (31) one obtains the follow- 
ing secular determinant for the evaluation of the 

eigenvalue, R& 

~~B,,-;-u:(R~~cos6fB~“/I = 0; 

for n= 1,2,3 ,..., A/I, (33) 

where 

&II, = 
s 

’ (D2 -a:)’ @,&)@,(y)d.r (34a) 
0 

J 

1 

BZn = (D’--LZ; - rc’)j,(~Q(D ,(y)dy. (34b) 
0 

The minimum (i.e., critical) value of R2 is established 
from the solution of equations (33) as a function of 
the wave number, u2, for each given set of system 

parameters (H,, H,, J, N, to, w, F,, st and q). 
(b) Transverse rdis. The differential equations 
governing the transverse rolls (24-27) are complex. 
As a result, the solution of this system should be 
complex. The work presented in reference [ 141, with 
radiation being neglected indicated that the critical 
Rayleigh number is indeed insensitive to variations 
of the Biot numbers H, and H,. The radiation being 
considered here in this analysis, it is expected that 
the effect of the Biot numbers should be quite 
negligible. Therefore, the effect of H, and H, is 
omitted from the analysis of the transverse rolls by 
letting H, = H,-+ m (i.e., fixed wall temperatures). 
To solve the system of equations (24-27) for H, 
= HZ-‘oz, by the Chandrasekhar method, complex 

solutions for li/* and 8* are constructed as 

$*(J) = $7 +i@, O*(JJ) = NT +i@. (35a) 

The solution (3Sa) being complex, another set of 
solution exists as 

$*(y) = $7 +i@, e*(y) = 0; + i@. (35b) 

Although there are two other possibilities, they are 
the same as either (35a) or (35b). The solutions are 
taken as 

#?I=, III=, 

where, the orthogonal functions 4,,,(y) are developed 
previously and given by equation (29) with the 
auxiliary eigenvalues IX,‘s from (30a) and the ortho- 
gonal&y condition (31). It is to be noted that for the 
case of two rigid wails only, the constructed 
functions I,+: and $3 given by equations (36) are 

similar to those reported in reference [ 181, such that 
I/IT is even and +$ is odd. The orthogonal functions 
N,(J) which satisfy the boundary conditions (27) for 
Hi-+ cc are taken as: 

O,( 1’) = sin p,v, fl, = flrrc. (37) 

The known solutions for H*(J) are introduced into 
equation (26) the resulting expression for j* is 

integrated subjected to the boundary conditions (27) 
forj* to obtain 

with 

j* = jT+ijr or ,j* = jz+i,j:, (384 

(38b) 

where j,,(~q) is obtainable from the solution of the 
following system : 

(D’-it’-3(1 -t~)r$)j,“, = -@,,(.r), i = I,2 

D.j,, Q.ij,, = 0, at _r = 0, 1. 
(39) 

Having determined the complex solutions for j*(y) as 
given above the problem defined by equations 
(24-26) now reduces to two equations (24) and (25) 
only in terms of the complex functions ri/* and H*. 
Then the constructed solutions (3.5) for $* and 8” 
together with the solution for ,j* are introduced into 
these equations, and the real and imaginary parts of 
each equation are separated. By utilizing the ortho- 
gonality condition for each of the resulting four 
equations, the end result leads to the following 
characteristic equation whose zeros establish the 
eigenvalues, R;*I, 

jlynm/j = 0, for II = 1,2,3,. . . 
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where the elements y,, are real matrices of order 
4N x 4N arising from the orthogonalization of 

equations (24) and (25), M being the number of 
approximations considered in equations (36). 
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RESULTS AND CONCLUSIONS 

To study the effects of each system parameter on 
the conditions marking the onset of instability, two 
different Rayleigh numbers are defined. One of these 
is the critical internal Rayleigh number Ra, which is 
based on the unknown difference between the initial 
wall temperatures (T,., - Tw,2) and the other is the 
critical external Rayleigh number Rd, which is 

defined on the basis of the difference between the 
external environment temperatures (T,, - T,,). The 

relation between these two Rayleigh numbers is 
given as 

where the temperature ratio is obtained from 
equation (8a) as 

Tw,, - ;r;,, 
Tx,-Lz 

= -[A,(e”-l)+A,(l-e-“)+A,]. 

(41b) 
The external Rayleigh number Ri! is a more 

convenient criterion to use under convective boun- 
dary conditions because the temperature difference 
involved is known; but in this study the internal 
Rayleigh number is used in order to facilitate the 
comparison of the results with that for the case of 
fixed wall temperatures. 

In the present study the calculations are performed 
for a fluid having a Prandtl number 0.72, because, 

the effects of radiation are more pronounced with a 
gaseous media. In discussing below the results for the 
effects of various system parameters on stability, the 
cases of “both rigid walls” and “lower surface rigid 
and upper surface free” are considered separately. 

Both walls rigid 
In Fig. 2 the critical Rayleigh number, Ra,, 

computed for Bknard cells is plotted as a function of 
the optical thickness T,, for the values of conduction- 
to-radiation parameter N = 1 and 0.1, (Q = Ed = I, 

o = 0, ye = 1 and 6 = 0) and for several different 
values of the identical Biot numbers H, and H,. As 
shown in this figure, for the non-radiating case (i.e., 
50 = 0), the critical internal Rayleigh number Ra, 
decreases with decreasing Biot numbers H, and H, 
as discussed in [19-211. When radiation is present, 
the stability is improved due to the smoothing of the 
medium temperature resulting from the drain of 
energy from the hotter to the colder region by 
radiation in addition to that by conduction. The 
effect of the Biot numbers on stability is less 
pronounced with increased radiation resulting from 
either a decrease in N or an increase in to. The 
reason for this is that when radiation increases the 
conduction effects become less important. 

HMT Vol. 22. No 1 H 

FIG. 2. Variation of critical internal Rayleigh number Ra, 
for a gray gas with H, and H, and the radiation 

parameters N and rO. 

To illustrate the effects of radiation on the stability 
of the fluid at any inclination, we present in Figs 3(a) 
and (b) the critical Grashof number Gr, for the case 

of fixed wall temperatures (i.e., Gr, = Gr*,) plotted as 
a function of the positive inclination angle (i.e., 0 <6 
< 90) and various values of the optical thickness TV 
ranging from 0 to m, for N = 1, 0.1 and Pr = 0.72. 

Figure 3(a) is prepared for N = 1. In this figure, the 
critical Grashof number, Gr,, for the longitudinal 
rolls at any angle 6, is shown by the dotted lines. 
When longitudinal rolls are dominant, the critical 
Grashof number at any inclination is related to the 
critical Grashof number at the horizontal position by 
Gr, = Gr,,/cos& as is apparent from equation (21). 

Whereas, when transverse rolls are dominant, the 
inclination angles “6” have a very little effect on the 

--- longitudinal rolls 

lo” 
(a) 

I I I I I 

45 60 60 75 9( 

0 15 30 45 
ho 6o 75 go 

FIG. 3. Variation of the critical Grashof number Gr, versus 
the positive inclination angle 6 and the optical thickness r0 

ofa gray gas for the cases: (a) N = 1 and (b) N = 0.1. 
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critical Grashof number. The reason for this can be 
explained as follows: Transverse rolls are controlled 
by the combined effects of dynamic forces or inertia 
forces developed from the base flow velocity and the 
perturbed buoyancy forces in both the x and z 
directions. For Prandtl number Pr of order of unity 
and with radiation being neglected, the instability is 
almost initiated due to the effect of the inertia forces 

because buoyancy forces have a very little influence 
when transverse rolls are dominant [14]. This 
conclusion is opposite to that for lingitudinal rolls, in 
which the instability sets in due to the top-heavy 
arrangement created by heating the fluid from the 
underside. In this case, the longitudinal rolls are only 
controlled by the component of the buoyancy force 
in the y-direction as shown in equation (21) which is 
solely dependent on the temperature boundary 

conditions represented by the Biot numbers. When 
radiation exists, its influence on the magnitude of the 
velocity is small compared to that on the tempera- 
ture distribution. As a result, the effect of radiation, 
when transverse rolls are dominant, is less pro- 
nounced than that when longitudinal rolls have a 
priority of occurrence over transverse rolls. 

Figure 3(a) illustrates the cross-over from the 

longitudinal rolls to the transverse rolls defined by 
the transition angle “6,” as a function of the optical 

thickness TV, for N = 1 and (w = 0, r~ = 1, &I = E* 
= 1). Clearly, increasing the optical thickness 7,, 

from to co decreases the crossover angle 6, from a 
value of 72” for the case of pure conduction to 39. 
for z,,-+co. For moderate radiation (i.e., N = 1, TV 
= l), this transaction angle is about 6, = 69”. Figure 
3(b) is plotted for N = 0.1 while keeping the other 

parameters the same as those for Fig. 3(a). This 
figure implies that as radiation becomes stronger, the 
transition angle shifts toward the horizontal at a 
much faster rate such that for 7,, > 1 the transverse 
rolls are dominant for all inclinations except at the 

horizontal, in which both types of the disturbances 
are identical and replaced by the Bernard Cells. 

Therefore, for T,, > 1, the maximum stabilizing effects 
of the radiation occur at the horizontal position if 
the fluid is heated from below. The reason for this is 

attributed to the fact that transverse rolls are created 
by the combined effects of the inertia forces and the 
perturbed buoyancy forces in the x and y-directions. 
At the horizontal position, both the inertia forces 
and the x-component of buoyancy force vanish as 
shown in equation (24) and stability is controlled by 
the y-component of the disturbed buoyancy force 
only which is solely dependent on ,the radiation 
transfer. As the angle 6 increases, inertia forces build 
up very fast and enhance the onset of instability since 
their dependence on radiation are much less than 
that of the buoyancy forces. For angles near the 
vertical, the critical Grashof number approaches the 
limiting value for the pure conduction as 7,, -+ xi. 

Figure 4(a) shows the critical Grashof number for 
three positive values of inclination angles S = 0, 30 
and 60” and for N = 1, 0.1, while Fig. 4(b) shows it 

4.104 

./ 
.I.-‘-‘- 

N =0.1 

0 2 4 To 6 0 10 

FIG. 4. Variation of the critical Grashof number Gr, versus 
the radiation parameters N and T,, of gray gases for the 

cases: (a) ~5 = 0.30 and 60” and (b) fi = 90. 120 and 150. 

for angles 6 = 90, 120 and 150’. When the angle S is 
greater than 90”, the physical situation corresponds 
to an inclined slot heated from the above sidewall. 
For N = 1, the critical Grashof number, Gr,, 

increases with increasing the optical thickness to; 

but, for angles 6 > 60”, the Grashof number reaches 
a maximum value and then starts to decrease very 
slowly. For N = 0.1, the critical Grashof number 
increases monotonically for the Benard Problem (i.e., 
6 = 0) whereas it assumes a maximum for the other 
inclinations. For the conduction regime considered 
here, for angles 90” < 6 < 180”, transverse rolls are 
always dominant for all values of the optical 
thickness 7. including the case T,, = 0, corresponding 
to the pure conduction problem. 

The effects of single scattering albedo o on the 
critical Rayleigh number, Ra,, for E, = a2 = 1, q = 1, 
H, = H, = 100, and 6 = 0 are shown in Fig. 5. As 
expected, the increased value of o, which cor- 
responds to increased scattering, decreases stability 
because the interaction of radiation with conduction 
and convection is decreased with increasing value of 
(0. 

Figure 6 illustrates the effects of the wall em- 
issivities er and s2 on the critical Rayleigh number 
Ru,forH,=H,+cc,w=O,q=l,and6=O.The 
stability is improved with reducing the wall em- 
issivities specially for strong radiation. The reason 
for this, is attributed to the fact that the base flow 
temperature distribution becomes flatter with mirror 
boundaries (i.e., E = 0), than with black surfaces (i.e., 
s= 1). 

Finally, Fig. 7 is prepared to illustrate the first 
order effects of nongrayness factor r) on the critical 
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FIG. 5. Effect of single scattering albedo o on the critical 
internal Rayleigh number Ra, at 6 = 0”; for various values 

of N and r0 for a gray gas. 
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FIG. 6. Effects of the wall emissivities sr and s2 on the 
critical internal Rayleigh number Ra, versus radiation 
parameters N and r0 at the horizontal position for a gray 

gas. 

Rayleigh number for aI = Ed = 1, w = 0, H, = H, 
-+ co, and 6 = 0. The range of q chosen from 0.4 to 2 
is considered reasonable for gases [22]. The assum- 
ption of constant ‘1 used in this analysis is applicable 

for either small temperature difference or small 
pressure variations. Stability is significantly im- 
proved with increased value of 4 especially for 
smaller values of N. The reason for the stabilizing 
effect of increased value of q can be explained as 
follows: This factor, by definition, is the ratio of the 
Planck mean to Rosseland mean coefficients. The 
Planck mean being associated with the emission of 
radiation, and the Rosseland mean with the absor- 
ption of radiation by the medium, the increased 

1cfL w =o.o.E,=C2=I L 

lo”, 

R% - 
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FIG. 7. Effect of nongrayness factor n on the critical 
internal Rayleigh number Ra, at 6 = 0”. for different values 

of N and rO. 
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--- = I 
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FIG. 8. Effects of Biot numbers H, and H, and the 
radiation parameters N and r0 on Ra, for the case of lower 

surface rigid and upper one free. 

value of q (i.e., q > 1) tends to drain more energy 
from the hotter region to the colder one, which, in 
turn, makes the temperature distribution more 
smooth compared with the case of small q, and as a 
result the onset of cellular convection is delayed. A 
more realistic model for the representation of the 
nongrayness can be used, but the complication 
arising from the increased algebraic involvement in 
the problem, makes it difficult to get a solution. 

Figure 7 shows the first order effects of nongray- 
ness on the instability phenomena for the horizontal 

position characterized by the Bernard Cells. Here in 
Table 1, we illustrate the effect of the nongrayness 
factor ‘1 on the critical Grashof number, Gr,, for w 
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Table I. An illustration of the variation of Gr, by the nongrayness factor q 
(o=0,r0=2,ii=90’:,H, =H,+cc,Pr=0.72) 

i: , El 

I 1 
1 0 
0 0 

Gr, for N = 1 Gr, for N = 0.1 

‘1 = 0.4 ‘, = 1 q=4 4 = 0.4 q=l ,, = 4 

8320 X960 12251 9061 10740 19022 
8590 9380 I3384 11860 15600 27920 
X814 9820 14460 14431 20600 36783 

= 0, q, = 2, 6 = 90’, Pr = 0.12 and H, = Hz+m. 

The nongrayness associated with transverse rolls is 
the most important parameter which has a strong 

effect on the initiation of the cellular convection; but 
this effect is less than that for the BCrnard Cells for the 
reasons stated previously. 

For the horizontal case, when the upper surface is 
exposed directly to the surrounding, the shear stress 
associated with the vertical disturbed velocity 11*(y) 
vanishes at this surface, and the onset of instability 
for this situation is expected to occur earlier than the 
case of “both walls rigid”. Figure 8 shows the effects 
of the Biot numbers H, for the lower wall and H, for 
the upper surface on the critical internal Rayleigh 
numberfor6=O,w=O,c,=E,=land~=l.This 
figure has a similar behavior as Fig. 2, except that 
the variations of Ra, with H, and H, are much more 
pronounced in this case than with two rigid walls. 

Although this figure is prepared for c1 = Ed = 1, 
other combinations of wall emissivity are also 
examined. The combinations other than E~ = c2 = 1 
gave slightly improved stability criteria. 

An examination of the convergence of the results 
computed from the analysis of the longitudinal rolls 

revealed that the largest difference between the 
second and first approximation about 1.376. The 
computational results for transverse rolls are carried 
out by using the scientific subroutine “LADATF” for 
determinants of orders 8 x 8, I2 x 12 and 16 x 16. 
The difference between the results of 16 x 16 and 12 
x 12 determinants is less than 0.30 percent. Also, the 

first solution defined by equation (35a) gives a 
critical Rayleigh number which is always less than 
that obtained from the second solution (35b) for all 
combinations of the input system parameters. 
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EFFET DU RAYONNEMENT ET DES CONDITIONS AUX LIMITES DE CONVECTION 
SUR LA STABILITE DUN FLUIDE DANS UNE FENTE INCLINEE 

R&me&Pour une inclinaison variant entre 0” et 180”, on etudie la stabilite neutre d’un fluide visqueux 
absorbant em&if, diffusant et non-@ contenu dam une caviti: allongie et soumise B des conditions aux 
limites de convection. L’approximation modifiCe P- 1 (approximation d’Eddington) est utiliste. On 
d&ermine ti la fois pour les rouleaux tourbillonnaires longitudinaux et transverses, les effets des nombres 
de Biot Hi et H, sur les surfaces, du paramttre conduction-rayonnement N, de I’t7paisseur optique yV de 
l’albedo de diffusion o, des kmissivith c1 et c2, du facteur 1 et de I’angle d’inclinaison 6, sur les condltlons 
de stabiliti dans les gaz. Les rtsultats montrent que le rayonnement, outre son effet stabilisant, d&place 

nettement I’angle correspondant au basculement des tourbillons. 

DER EINFLUSS VON STRAHLUNGS- UND KONVEKTIONS-RANDBEDINGUNGEN AUF 
DIE STABILITAT EINES FLUIDES IN EINEM GENEIGTEN SCHMALEN SPALT 

Zusammenfassung- Es wird die neutrale Stabilitat eines absorbierenden, emittierenden, streuenden, 
nicht-grauen viskosen Fluides untersucht, welches sich innerhalb eines geneigten Spalts befindet und 
konvektiven Randbedingungen ausgesetzt ist. Die Neigung betragt 0” bis 180”. Zur Losung des 
Strahlungsproblems wird die modifizierte P-l Approximation (Eddington Approximation) eingesetzt. Die 
Einfliisse der Biot-Zahlen H, und H, fur die untere und obere Grenzflache, des Verhaltnisses von 
Leitung zu Strahlung N, der optischen Dicke ra, des Reflexionswinkels o der einfachen Streuung, der 
Emissivitaten ci und tz der Wand, des Faktors n fur die Abweichung vom grauen Strahler und des 
Neigungswinkels 2 auf das Einsetzen der Stabilitat in Gasen werden fur longitudinale und transfersale 
Wirbelrollen bestimmt. Die Ergebnisse zeigen, da8 die Strahlung neben ihrer stabilisierenden Wirkung 
vor allem den Ubergangswinkel fur den Umschlag von transversalen zu longitudinalen Wirbelrollen in 

Richtung der Horizontalen verschiebt. 

BJIIIJ-IHME JIYWiCTbIX M KOHBEKTMBHbIX TPAHWIHLIX YCJIOBHfi HA 
YCTOtiYHBOCTb W4AKOCTH B HAKJIOHEHHOM HEEOJIbIIIOM qEJ-IEBOM 

KAHAJIE 

AHHOTZIUIM - Mccnenyercn HeiiTpanbHaa ycToihHB0cTb nornomaIome8, 0Tpaxatowel H paccewsa- 
H3meii HeCepOi BX3KOii XWlKOCTW B y3KOM sasope HaKJlOHHOrO KaHaJIa B AHanarroHe yrJlOB OT 0 A0 180” 
npn I’paHWlHblX yCJlOBHXX TpeTberO pODa. npOUeCC H3JlyqeHLUl y’IHTbIBWICB C ~OMOlIQ&J MOAH‘-@- 
UHpOBaHHOrO P-I npa6nHmeHHn (npH6nWueHHe 3ZWiHl-TOHa). OrIpeAenRnOCb BJIURHHe qHCen 6H0, 
H, H H,, AJIB HHaHeii W BepXHeii rlOBepXHOCTefi, JlyVHCTO-KOHAyKTHBHOrO rtapaMeTpa N, OnT&iVeCKOii 
TOJIU,HHU 70, eAHHH’iHOF0 KO+$HLWeHTa AH@$y3HO-paCCeHBalomer0 OTpaXCeHHX W, K03+$HUWeHTOB 
H3Jly~eHWi CTeHOK El H E2, K03@@iIIHeHTa HeCepOrO H3Jly’ieHHR 4 B yrJIa HaKJIOHa 6 Ha BOSHIMHO- 
BeHHe yCTOii’iHBOCTH B ra3aX KaK Qnn npOAOnbHbrX, TBK U nO,,epe’,HbrX BHXpeBblX BanOB. Pe3ynbTaTbI 
CBHJIeTenbCTByK3T 0 TOM, ‘iT0 nOMHM0 cTa6WIH3wpymmero BOSAefiCTBBB Li3JIy’ieHHe CymecTBeHHO 
cMemaeT K ropH30HTanH yron, npu KOTO~OM npoHcxonHT nepexon nonepeqsblx Ban06 B npononbHbIe. 


